Moving Toward Consistent Analysis in the HFC&IT Program: *H2A*

Margaret K. Mann
National Renewable Energy Laboratory
May 25, 2004

This presentation does not contain any proprietary or confidential information

H2A Team

Objectives

- Overall goal: Bring consistency and transparency to hydrogen analysis
- Phase I goals:
 - Production and delivery analysis
 - Consistent cost methodology & critical cost analyses
 - R&D portfolio analysis
 - Tool for providing R&D direction
 - Current effort is not designed to pick winners

Funding

- Project inception February 2003
- Total funding approximately \$800k
- FY04 funding approximately \$600k
 - \$350k to National Labs
 - \$250k to expert contractors

Technical Barriers and Targets

- Section 4.3.3 of Program's MYPP
- Provide consistency in analysis
- Perform analysis needed to:
 - Provide direction, focus, and support to the development and introduction of hydrogen production, storage, and enduse technologies
- Types of analysis:
 - Resource
 - Technology feasibility and cost
 - Environmental
 - Delivery
 - Infrastructure development
 - Energy market

Approach

- Cash flow analysis tool
 - Estimates levelized price of hydrogen for desired internal rate of return
 - Take into account capital costs, construction time, taxes, depreciation, O&M, inflation, and projected feedstock prices
- Production costs estimated
 - Current, mid- (~2015), and long-term (~2030) technologies
 - Natural gas, coal, biomass, nuclear, electrolysis
 - Current delivery components
 - Data from published studies and industry design
- Refined inputs and results based on peer review and input from key industrial collaborators (KIC)
- Identified key cost drivers using sensitivity analyses

Example

Project Safety

- Current effort is analysis of cost of production and delivery
- Subsequent phase will incorporate standardized reporting of project safety

PROCESS ENERGY EFFICIENCY ASSUMPTIONS (Analysis Inputs, These are assumptions (i.e. single-step conversion efficiencies) that are		
Efficiency results should be given in terms of the lower heating values		ks
Energy efficiencies for individual process steps (add rows as appropriate)	Basis	Reference
IYDROGEN PRODUCT CONDITIONS	Comments	PEMFC Spec. (1)
Pressure (psig)		
% Hydrogen		98 minimum
CO ₂ (ppm)		< 100
CO (ppm)		< 10
Sulfer (ppb)		< 10
Ammonia (ppm)		< 1
Non-methane hydrocarbons (ppm)		< 100
T 1 1 6 0 NO 10 10 10 10 10 10 10 10 10 10 10 10 10		< 2
Total of Oxygen, Nitrogen and Argon (%)		
Water (%) Other (specify)		

- FY03: Definition
 - 1. Assess state-of-the-art
 - 2. Assemble team
 - 3. Define H2A objective
 - 4. Define first phase
- Phase I: Production and delivery cost analysis
 - 5. Assemble key industrial collaborators (KIC) group
 - 6. Develop cash flow tool
 - 7. Develop approach for feedstock and utility costs
 - 8. Perform critical analyses, including sensitivities
 - 9. Roll-out initial results at NHA
 - 10. Make model available on web
 - 11. Publish paper on Phase I results

Phase II possibilities:

- -Environmental analysis
- -Transition analysis
- -End-point analysis

Technical Accomplishments

- Developed central and forecourt standard reporting spreadsheets
 - Documents assumptions, inputs, and results
- Completed base cases with sensitivity analysis for current, mid-term, and long-term technologies
 - Natural gas reforming: central and forecourt
 - Coal
 - Biomass
 - Nuclear
 - Central wind / electrolysis
 - Distributed electroysis
 - LH₂ and cH₂ (Tube Trailer and Pipeline) Delivery
- Worked with key industry collaborators (KIC) to establish parameters, process designs, and technology assumptions
- Demonstrated ability to calculate levelized hydrogen price and document a consistent set of assumptions

H2A Cash Flow Analysis Tool

Process Description

Feedstock & Utility Prices

Technology Performance
Assumptions

Process Flowsheet & Stream Summary

Financing Inputs

Cost Inputs

Replacement Capital

Cash Flow Analysis

Results - Price of H2

An An An	Base Case:			
Feedstock Costs				
Type of electricity used	none		Base Case	H2A Guidelines
Escalating electricity cost? (Enter yes or no)	Yes		110000	
		-decade increments)	2000	200
Enter electricity cost if NO is selected above (\$/kWh)		umed Start-up Year	2005	2005, 2015, 203
Electricity consumption (kWh/kg H2)		er-Tax Real IRR (%)		10
Electricity cost in startup year (\$/kWh)		CRS, Straight Line)	10% MACRS	MACE
Electricity cost (\$/year, startup year dollars)	\$0		20	WINCE
		lysis Period (years)	40	
Type of natural gas used	None	Plant Life (years)	40	
Natural gas energy content, LHV, if standard H2A value is not desired (GJ/Nm3	0.020	d Inflation Rate (%)	1.90%	1.90
	0.030	Income Taxes (%)	6.0%	6
Escalating natural gas cost? (Enter yes or no)	Yes	Il Income Taxes (%)	35.0%	35
	1	ective Tax Rate (%)	38.9%	
		acity (kg of H2/day)		
Enter natural gas cost if NO is selected above (\$/Nm3) Natural gas consumption (Nm ³ /kg of H2)		Capacity Factor (%)	90%	Varies according to case
		Output (kg H2/day)		10 0000
Plant Output (kg H2/year)				

Key Financial Parameters Forecourt and Central

- + Reference year (2000 \$)
- + Debt versus equity financing (100% equity)
- + After-tax internal rate of return (10% real)
- + Inflation rate (1.9%)
- Effective total tax rate (38.9%)
- Design capacity (varies)
- Capacity factor (90% for central (exc. wind); 70% for forecourt)
- Length of construction period (0.5 3 years for central; 0 for forecourt)
- Production ramp up schedule (varies according to case)
- Depreciation period and schedule (MACRS -- 20 yrs for central; 7 yrs for forecourt)
- Plant life and economic analysis period (40 yrs for central; 20 yrs for forecourt)
- Cost of land (\$5,000/acre for central; land is rented in forecourt)
- Burdened labor cost (\$50/hour central; \$15/hour forecourt)
- G&A rate as % of labor (20%)

Mid Term Central Technology Options - \$/kg Components -

Mid-term Forecourt Technology Summary

Note: For side by side comparison, central plant and delivery costs must be added to the Pipeline and LH₂ cases.

Sensitivity Results: Mid-term Technology - Large NG SR

Low	Base	High	
0.9	1.8	3.1	
1.85	~4.15	8.58	
90	70	50	
375	525	1,500	
0.025	~0.048	0.12	

H2A Delivery Analysis

- Develop delivery component cost and performance database
- Develop delivery scenarios for major markets and demand levels
- Estimate the cost of H₂ delivery for scenarios

Assume 2005 delivery technologies

Delivery Scenarios

Market Type	Early Fleet Market	General Light Duty Vehicles: Market Penetration		
	(1%)	Small (10%)	Medium (30%)	Large (70%)
Metro	Х	Х	Х	Х
Rural			Х	
Interstate			Х	

Delivery costs are based on component combinations that meet the demands of the market

3 Delivery Modes: Compressed Gas Truck;

Liquid H2 Truck; Gas Pipeline

Interactions & Collaborations

H2A team:

- Central: Johanna Ivy (NREL), Maggie Mann (NREL), Dan Mears (Technology Insights), Mike Rutkowski (Parsons Engineering)
- Forecourt: Brian James (Directed Technologies, Inc.), Steve Lasher (TIAX), Matt Ringer (NREL)
- Delivery: Marianne Mintz (ANL), Joan Ogden (UC Davis), Matt Ringer (NREL)
- Finance, feedstocks, and methodology: Marylynn Placet (PNNL), Maggie Mann (NREL), Matt Ringer (NREL)
- Environmental assessment: Michael Wang (ANL)
- DOE: Mark Paster, Roxanne Danz, Pete Devlin
- Key Industrial Collaborators: AEP, Air Products, Areva, BOC, BP, ChevronTexaco, Conoco Phillips, Eastman Chemical, Entergy, Exxon Mobil, FERCO, GE, Praxair, Shell, Stuart Energy, Thermochem
- Other: Systems Integration, Program Tech Teams, efforts by H2A team member organizations

Future Work

Remainder of FY03:

- Incorporate energy efficiency and environmental measures (Summer '04)
- Website with spreadsheet tool, results, and detailed documentation (Summer '04)
- Complete delivery component and scenario cost analysis (Fall '04)
- Complete remaining cases (Fall '04)
- Peer-reviewed paper (Fall '04)
- Plan for next phase of H2A
 - Transition analysis
 - End-point analysis